
~~ 

b [NASA-CR- 18G377) P I A L Y S I S  CP PIEtlGBY USE FOR 887-278 11 
18PBOYET) DESIGN AblD CCEPILE-!IIEE ALLOCATIObl 
CF LOCAL MELICBY (I l l incis  D o i r , )  27 p 
Avai l :  IZIS BC A O 3 / B P  A01 CSCL 098 Bnclas  

- -- I 

G3/60 0063961 
I Analysis of Medory Use for Improved Design and 

Compile-timti Allocation of Local Memory 
By Geoffrey D. McNiven and Edward S. Davidson 

Coordinated Science Laboratory 
University of Illinois 

UrbanaIL 61801 

New trace analysis techniques are used to study memory referencing behavior for the purpose of 
designing new local memories and determining how to allocate them for data and instructions. In 
an attempt to assess the inherent behavior of the source code. the trace analysis system described 
here reduces the effects of the compiler and host architecture on the trace by using a technique 
called flattening. The variables in the trace. their associated single-assignment values, and 
references are histogrammed on the basis of various parameters describing memory referencing 
behavior. Bounds are developed specifying the  amount of memory space required to store all live 
values in a particular histogram class. T h e  reduction achieved in main memory traffic by 
allocating local memory is specified for each class. 

1. Introduction 

The traffic between a processor and main memory has become more of a bottleneck as 

processor operations have become faster relative to main memory accessing. and as more processors 

share the same main memory. The first problem is particularly evident in singlechip processors 

where the on-chip ptocessing rate can be much faster than the rate at which data can be transferred 

off chip. Large mainframes and supercomputers also often have a memory bottleneck. 

An appropriate solution to this traffic problem invohves placing a small memory near the 

processor in a location where traffic to this local memory will have little adverse effect on 

performance. The idea of local memory is not a new one: both a cache and a r e g k  file qualify as 

such. Because the local memory is small, it must be used efficiently. Each location must hold a 

datum that will not only be referenced again, but referenced again soon. thus effecting the 

maximum reduction in traffic. 

January 29,1986 



Anal- of Memory Um 2 

Future knowledge is generally unavailable to a cache. Thus. the cache controller is unable to 

allocate space based upon the future referencing patterns of data in the cache. Rather, allocation 

must be performed on the bass of past behavior. us in the case of LRU, FWO. urd LFU algorithms. 

During compilation. however, the compiler is able to acquire a rough future knowledge of memory 

referencing patterns. This knowledge cannot be exact in programs where the memory locations 

referenced are data dependent, as is the case in most programs. Using available future knowledge. 

a good compiler is able to make effective use of a register file. 

Using a register allocation technique for cache allocation would result in a cache that is part 

of the architecture and receives directives from the compiler or the assembly language programmer. 

Instead of performing a detailed analysis of referencing behavior on the entire program, as would 

be done when performing register allocation. the compiler could recognize classes of variables that 

exhibit similar referencing behavior and allocate memory to a variable based upon its class 

membership. 

The study reported here was performed with such a scheme in mind. Program traces are 

generated, and the variables in the trace are classified on the basis of statistics related to memory 

referencing behavior. These classes of variables exhibit Similar memory referencing behavior. at 

least to the extent that their similar statistics imply. Furthermore, these statistics can be used to 

compute bounds on the amount of memory required to hold all live members of a class as well as 

bounds on the effect of the class on main-memory traffic. In many cbses, class membership can be 

inferred by a compiler based on a variable's use in the source program. Thus. this analysis offers a 

method by which the compiler can assist the cache controller in allocating local memory. This 

method is far less costly than performing a complete register analysis on the program. 

A question arises regarding which statistics on the referencing behavior of a variable indicate 

its contribution to traffic and memory use. Several statistics provide such an indication, including 

average interreferace time, interreference time standard deviation, number of references, lifetime, 

number of deaths, average death time, and death time standard deviation. We classify the 

DaApT Jmuary 29,1986 



I 

Analysis of MemorJ Uae 3 

variables in a program by these statistics, then use information regarding the size of the classes. and 

bounds derived from the class statistics to draw conclusions regarding design and allocation of local 

memory. 

There is a wealth of work involving analysis of memory referencing behavior, cache 

performance. replacement algorithms. and register allocation. An excellent Survey of cache 

memories can be found in.[Smit82] A variety of cache m&ement studies are 

available.[Stre83, Clar83, Haik84. AKcBs6, PeSh77) '"he issues involved in cache measurement and 

workload choice are discussad in.[Smit85] The impact of cache on system performance is mentioned 

discussed in.[MGST70] A survey of replacement algorithms is available in.[Bela66] and an 

algorithm to minimize traffic is found in.[HKMW66] Register allocation algorithms are described 

in.[Day70, Beat74. Chai821 

The work described in this paper, however, is directed toward reducing local-to-main memory 

traffic instead of cache misses. While no replacement algorithm is specified. guidelines for 

developing a replacement algorithm are described. along with guidelines for designing local 

memory. Much of the philosophy behind our memory trace analysis system is unusual. 

In the remainder of this paper, section 2 describes our memory analysis system, including the 

tracer, preprocessors. and the programs that analyze the trace and produce appropriate statistics. 

Section 3 offers some bounds on memory use based on the limits of the histogram classes and the 

number of values in each class. Section 4 presents the data collectad from several traces and 

discusses their implications for design of local memory. 

Our memory analysis system' generates and analyzes traces under Berkeley UNIX on a VAX. 

Most trace analysis experiments are performed on simple address traces. Because clues to memory 

referencing information arc available in the program structure. the traces described here include 

such information as opcodes, addressing modes, the limits of the text and initialized data spaces, 

and the values of the frame and argument pointers at procedure calls. Including this information 

DRAFT January 29,1986 



Anal- of Memory Urn 4 

allows a broader analysis. including partitioning the variables according to the memory region in 

which they reside. such as stack, heap. text segment. etc. 

The results of most machinelevel address tram are. by nature. vcry dependent upon the 

cornpil-architecture system on which they were collected. This dependence is important for 

studies related to a specific system; however, the design of new architectures should not be unduly 

biased by system4ependent aspects of measurements. Instead. a compiler and architecture 

independent trace is desirable. The tracing system described here attempts to reduce the 

dependence of the trace on the host architecture. The primary vehicle for achieving independence is 

a tractprocessing program called the frottener. 

Most general-purpose computer architectures include a multilevel memory hierarchy, usually 

consisting of a register set and a main memory. In addition, many systems utilize further, 

architecturally-invisible levels such as cache and, in virtual memory systems. physical memory 

and disk. Because thii research involves allocation of local memory, analyzing a trace with register 

allocation already performed affects the results. The primary effects of register allocation that are 

visible. in the trace are the use of registers to hold operands and addresses. and load and store 

instructions for loading registers. storing d t s .  and performing spilling. 

Compilers also affect the trace through the quality of the generated code. Poor generated code 

results in more instructions Wig executed when the program is run. In particular, poor compilers 

tend to generate extra move instructions. The move instructions are often used to store data in 

temporary locations. nrmlting in extra variables and references appearing in the trace. 

Furthermore, executing a move instruction creates an alias: if a datum is copied to another location 

without modification, then two different memory locations contain the same piece of data. 

&rrcspondingly, a single piece of data has two names: the addresses of these two memory 

locations. 

' 

The flattener reduces the dependence of the trace on the underlying compiler and machine 

architecture by removing a l i i .  move instructions. and the multilevel memory hieratchy. It also 

DIUFI' January 29,1986 



Analysis of Memory Uae 5 

maps addresses from the space of the memory hierarchy into a single level address space called the 

value space. containing values. A wluc is much like a variable: however, a value is a single- 

assignment entity: it is written just once, but may be read any number of times. The single- 

assignment property is essential if aliases are to be removed. If a variable is written several times. 

then it cornsponds to several values. one for each write. A value becomes liw when it is 

written-or read on the first reference to an input variabltand deaf whCn it is read for the last 

time. A variable is live when one of its values is live and is dead otherwise. 

Both memory locations and registers are mapped into the value space. Value names are 

assigned sequentially. starting with 1, as needed. All items in memory, including instructions, are 

considered to be values. Values are all considered to have the same size, regardless of their content 

or the sizes of their associated variables. 

' When the flattener processes the trace file, it associates a value name with each memory 

location in the trace. Whenever a read reference to a memory location is encountered, that 

reference is transferred to the flattened trace. with the associated value name in place of the 

memory address. Whenever a write reference to a memory location is encountered. the memory 

location is assigned a new value name. and the reference is transferred to the trace file with the 

new value name replacing the address of the memory location. A modify reference is treated as a 

read reference followed by a write reference. When a move instruction is encountered. no 

references are transferred to the trace file, instead the destination operand is associated with the 

same value name as the source operand. Treating move instructions in this fashion removes aliases. 

The move instructions are not included in the flattened trace file, because they are useless. 

Performing flattening on the trace file reduces the effects of compiler-performed register 

allocation by renaming register variables and memory locations as values and eliding move 

instructions. while linking both the source and target of the move to the same value. Eliminating 

move instructions also removes some of the effects of poor compilation. A further result is that 

analyzing a flattened trace file allows us to gather data about memory referencing patterns of 

January 29,1986 



Anal- of M e m v  Urn 6 

variables only during their live periods. Thest periods are of in- to the memory designer, 

kcruse if the allocation of live variables can be performed properly, then memory performance 

a n  be optimized. 

Flattening is an optional process and is not appropriate for all analyses. A trace should be 

flattened when information concerning values Is desired. and should not be flattened when 

information concerning variables is desired. For example. it is not appropriate to use a flattened 

trace to drive a cache simulator. The simulated cache performance would be artificially bad 

because in a flattened trace, different values of the same variable all have different names. If they 

all had the same name, as is the case in an unflattened trace. then as new values were created by 

writes to the variable, dead values would automatically be removed from the cache as they were 

overwritten by the new values. 

Thus. flattening removes some effects of the underlying compiler-architecture system on 

which the trace was generated. Analyzing a flattened trace allows measurement of variable 

referencing behavior only during the periods when the variable is live. Live variable analysis 

removes the bias to the statistics c a d  by including a variable's referencing activity-.g.. moves 

or unreferenced intervals-while it contains dead data. 

The tracing system consists of the tracet. the flattener, a combination cache simulator and live 

variable analyzer. and a variety of prognms for producing histograms, graphs and tables 

concerning memory use. 

In any empirical study of performance, the question of the choice of workload always arises. 

We tried to choose programs that would provide interesting results for studying memory 

referencing behavior. Our tracing facility das not allow tracing of the operating system. The data 

presented here is from a few user programs that we have analyzed to date. The programs under 

consideration were chosen for their diversity, their representation of a certain type of workload. 

and their size. Our memory analysis system is unable to consider traces longer than about a 

million instructions, due to hardware limitations. Due to cpu usage constraints, the traces are one 

January 29,1986 



Anal- of Memory Un 7 

hundred thousand instructions in length. 

Because these traces do not cover the entire execution of most programs under consideration, 

the section of each program which was felt to be most representative of the behavior of the entire 

program was selected. For each large program, a profie was generated using gprof. Most of the 

programs displayed a small group of subroutines that account for the majority of the runtime. 

Tracing was initiated at the entrance to this group of popular subroutks. and continued for 

100.o0O consecutive instructions. 

3. Bounds on Memory Space Requirements for Histogram classes 

To determine an upper bound for the memory requirements for a class of values, consider the 

two dimensional histogram of number of references and lifetime. The average interreference time. 

I. for a value is given by: 

where L is the value lifetime, and R is the number of references to the value. How many values 

from particular histogram classes can be live at one time, Le., how much memory space might be 

required to hold them all? 

First consider a class of values that is referenced exactly twice, with lifetimes from L 1 to L 2. 

To maximize the number of simultaneously live values from this class. let L = L2. let the memory 

be initially empty at time t = 0. and assume that only values from the class under consideration 

are referenced. At time t = 1.8 value may be referenced for the first time. This may be repeated 

until t = L. At this point, L values in this class are live. At t = L + 1. the value'referencsd at 

t = 1 will have been live for time Le and must be referenced for its second and final time. This 

must also be true for the next L - 1 references, at which time all L of these values must have 

&ved their final reference. NO other reference pattern can produce more than L live values 

from this class. Thus. the maximum number of simultaneously live values from that class is L . 

DaAFT Janaary 29,1986 



Anal* of Memory Urn 8 

Now consider the general cast of I histogram class of values that has lifetimes from L to L 

and are referenced R l  to R2 times. The maximum number of simultaneously live values in this 

class is reached if dl values have the longest lifetimes. L2, and the fewest references. R1. 

Accordingly. let L = La and R R p  Suppose that the maximum number of simultaneously live 

values is V and suppose they are all live at t = L. Then all V values are referenced first in the 

interval 10. L and last in the interval [L ,2L 1. Thus, they are all' referenced R times in the 

interval [OJL ), ir., R *V < 2L.  Thus, 

2L V < -  R 
2L 
R Note that if R = 2. then V d L as above. One reference pattern that achieves V = - is as 

L L 
R follows. Starting at t = 0. reference values R - 1 times each, then reference - other values 

A 

2L 
R once each. Now - values are live and 

L L t = - ( R - I ) + - = L .  R R 

L 
R Beginning at t = L , reference the first - values once each, for the time, and then each of the 

sscond - values for R - 1 consecutive times. Now all - values are dead and t = 2L.  Note L 2L 
R R 

that the first and last values referenced had lifetime L and all others had lifetimes < L. Thus. 
the marimum number of simultaneously live values in the histogram class with lifetimes L to L 2  

.ad number of referenas R1 to R2 is 

The argument above assumes that all of the references during the critical interval are to 

values from the class under consideration. During execution of most programs. this will not be the 

case. Instead. references from the other classes will be intermingled. The actual number of live 

values from each class will actually be significantly less than the bound, in most cases. 

January 29,1986 



balysb of Memory Uae 9 

A metric of related interest is the average number of live values with lifetimes from Ll to 

Lz. Bounds on the average can also be computed. Consider all the value lifetimes laid end to end 

in one long strip. The length of the strip is measured in references, and each value takes a length of 

strip qual to its lifetime in references. This strip is then chopped up into smaller segments. each of 

S - t references. where S is the length of the program trace in references. and 0 < t < L . A 

value lifetime cannot be cut in the middle. 60 the strips may not be eqk l  to S and S - t is 
always equal to M integral number of lifetimes. The numbv of S-length segments is the average 

number of live values. VoyI, which can be bounded above and below by 

where N is the total number of values in this class and S is the length of the trace. The value 

lifetime L is chosen as L for the lower bound and L 2 for the upper bound. An estimate of the 

average may be computed by using the average of L 1 and L2 for L . The bounds on V,, differ 

from those on the maximum V in that they use not only the parameters of the histogram classes, 

but also the results of the analysis which produces the number of values. N ,  in each class. 

Computing bounds for some of the classes and comparing them to actual counts of live values 

demonstrates the usefulness of these bounds as estimators, as shown in the next section. 

The sum of the maximum memory requirements for all classes may be greater than the 

available local memory. In this case, an assesmerit is needed of the traffic caused by excluding 

certain values from the local memory. Consider a histogtam in which the metric for each class is 

the fraction of total references. The fraction of references corresponds to the fraction of traffic, if 

no local memory is used. Thus, the fraction of references for a class indicates the fraction by 

which the total main memory traffic would be reduced if that class were put in local memory. On 

a more detailed level, one over the fraction of traffic indicates the average number of references 

between two references to the same histogram class. 

D U F T  January 29,1986 



Analydr of M e w  Un lo 

The trace analysis centers on a trace of the program troff, a text formatter running under 

UNIX. In addition we consider three other programs in less detail. These are guuss, diff, and fzt. 

Gauss is a standard gaudan elimination program operating on a 10x10 m~trix. Diff is a UNIX 

utility program that cornpans two files and prints the differences. Flt is the flattener described 

earlier. While data was being generated for this paper, flt became one of 'the major cpu users on 

the system and thus qualified for a spot in this study. All of the traces are 1OOOOO instructions 

long. 

Table 4.1 lists the programs and the number of references, values. and variables in each. The 

values are present in the flattened trace, while the variables are present in the unflattened trace. 

On the average, each trace has 5-9 values per variable. Considering that many of the values are 

instructions which are never written. this implies well over 5-9 writes per data variable. There are 

an average of 6-8 references per value. 

Figure 4.1 shows a scatter plot of average interreference time vs. interreference time standard 

deviation for troff. Each dot represents a value. The plot shows lo00 points. Plotting more points 

than this adds little information because most of the points cluster near the origin. This graph 

shows three major classes of values. The f i rs t  class has small interreference time and small 

standard deviation. This comsponds to variables that are referenced frequently and regularly 

during their lifetimes. This class is a likely candidate for allocation to memory because of the 

small interreference time. 

Table 4.1. Referen-. values, and variables per trace. 
Program References Values Variables 
diff 254020 43807 4799 
flt 236473 
gauss 242870 
troff 289517 

34121 
31029 
35203 

8223 
5562 
5042 

January 29,1986 



Analyaia of Memory Urn 11 

The second class contains those values with 8 larger interreference time and 8 small standard 

deviation. This class contains values that are referenced infrequently, but regularly. Values in 

this class would not be good candidates for allocation in local memory if space is limited. While 

these values may be referenced repeatedly, the time between references is so long that memory 

space could probably be better utilized for 8 value that is referenced more frequently. 

The final class of values has a short to medium interreference time and a larger standard 

deviation. This class corresponds to values that are referenced irregularly. We like to think that 

these values tend to be referenced frequently for a bit. then ignored for a long time. then 

referenced frequently again. If this is the case, then these values could be allocated memory only 

during bursts of references. The other possibility is that the values are referenced at random 

intervals. in which case defining a memory allocation policy would be more difficult. 

In an effort to draw some more precise boundaries. statistics on various parameters 

histogrammed. In some cases, these statistics suggest classification by more than one parameter, so 

two dimensional. tabular, histograms were used. The bounds for one parameter are shown on the 

X axis, while the bounds for the other parameter are shown on the Y axis. The size of a class is 

shown numerically at the intersection of the sets of bounds. 

Table 4.2 is a histogram of interreference standard deviation vs. average interreference time. 

The bounds for the classes were chosen to be powers of 10. Histograms are usually constructed 

with equal size bins. but in this case, many values are clustered near the origin. while there are few 

with large coordinates. Thus, greater resolution was desired near the origin. The number in each 

clasr specifies the fraction of all values that are in that class. A class with bounds A and B 

implies that the values in that class have a statistic on the interval [A 3 1. A '<' in a class implies 

that the class contains less than 1% of the values. 

The classes with interreference times between zero and 10 contain the vast majority of the 

variables. The classes with standard deviation 0.1 and average interreference times 0-1O00 contain 

62% of all values. Plotting the same histogram. but only for values that are referenced exactly 

DRAFT January 29,1986 

.. 



h a l y d a  of Memory Uae 12 

twice yields table 4.3. Notice that 44% of the values. (L subset of the 62%. arc referenced only 

t w k .  This group of values is a prime candidate for allocation to local memory. because of the 

relatively frequent referencing md short lifetimes of the values in these classes. Because these 

values are referenced only twice. theh interreference times and their lifetimes arc the same. 

The class in the upper left hand comer of table 4.2 has an interderence t h e  and standard 

deviation on LO.1). Furthennore. this class disappears in figure 4.3. Th& class contains the values 

that are referenced only once while the program is executing in user mode. This class includes 

instructions executed only once, initialized data, data input and output by the operating system. 

and data written once and never read. 

A histogram of lifetime vs. number of references is shown in table 4.4. The classes with 1 to 

10 references contain 96% of the values. Note that singlereference values are assigned lifetime 0. 

This histogram is especially useful for computing the bounds developed in the previous section. 

shown in table 45. For each histogram class, the top number is the upper bound on the maximum 

live from that class. The second number is the upper bound on the average live. and the bottom 

Lifetime 
~ 

1-10 

10-100 

100-lOoo 

1 ~ 1 o o o o  

10000-100000 

100000-1000000 

Table 4.5. Max and average upper bounds for m f f .  
1- 10- 100- 1000- 10000- 
10 100 lo00 10000 1OOOOO 

5 
1 
0 

50 
. 4  

0 
500 
19 
1 

5000 
26 
2 

5oooo 
353 
35 

5OOOOO 
704 
352 

5 

50 
2 
0 

500 
13 
1 

SO00 
177 
17 

5oooo 
352 
176 

5 

50 
13 
1 

500 
177 
17 

5000 
352 
176 

5 

50 

500 
352 
176 

5 

50 
352 
176 

DBAPT January 29,1986 



number is the lower bound on the average live. The accuracy of three of these bounds as quick 

estimators is evident from figures 4.244. which show the actual number of live values from three 

classes as a function of time, measured in references. 

The histogruns up to this point have counted the number of values in each class. which offers 

8 measure of the amount of memory required per class. However. we are a h  interested in the 

traffic. and the referencing activity causcd by each class. This is shown for troff with an 

interreference time vs. standard deviation histognun in table 4.6. In this histogram, the numbers in 

each class indicate the fraction of the total references to values in that class. Comparing table 4.6 

with table 4.2, one is struck by the shift in the weights of classes. Classes that contain many 

values may account for relatively few references, while classes with few values may account for 

many references. 

The cause of this shift in the weights of the classes is better illustrated in table 4.7. Notice 

that the classes with greater reference bounds account for a larger portion of the references. Thus. 

while the classes with small interreference times and few references account for a large percentage 

of the values yet require little memory space, the classes with fewer values. longer interreference 

times and more refexenus make a more significant contribution to the traffic. It is thus important 

that these classes be allocated space in memory. 

Consider the class in table 4.7 with 1 ~ 1 O O O  references and a lifetime of 100.00090. "his 

1 class contains about 1% of the values. yet almost of all references are to this class. 

Furthermore, the average number of live values in this class, from table 4.5, is estimated as 

352 + 176 =264 out of a total of approximately 352 values in the class. The long lifetimes of the 

values in this class result in the large number of average live. 

2 

Earlier. a distinction was mentioned betwan values and variables. Figure 4.5 shows a plot of 

hterreference standard deviation vs. average interreference time for variables in the unflattened 

trace. Because this plot involves memory locations instead of values. as in figure 4.1, the 
1 

DBAFT January 29,1986 



Anal- of Memory Uae 14 

referencing pattans arc not as uniform, as evidenced by a more spread out plot. In particular, 

more of the points have a large standard deviation. Each memory location contains several values, 

each of which may have distinct referencing behavior. The referencing patterm for values of the 

same variable arc averaged together in figure 45. whereas they are displayed independently in 

figure 4.1. Furthermore. because the memory locations are not killed off on the last read before a 

write. their lifetimes arc longer. Similarly. the period during which the 'niemory location is dead, 

between a write and the previous read, is included in calculating the interreference time. 

Table 4.8 is a histogram of interreference time standard deviation v6. average interreference 

time for variables. The numbers in the classes indicate the fraction of all variables in each class. 

Comparing this table to table 4.2. one fmds that, with the exception of the class in the upper left, 

the classes with the smaller bounds contain a smaller percentage of the variables than do the 

corresponding percentage of values in table 4.2. Reasons mentioned for this shift are the same as 

above. Values with smaller interreference times may occupy the same memory location as values 

with larger interreference times. All the interreference times for a variable are averaged together. 

resulting in fewer small interreference times. Furthermore, the standard deviations are larger 

because of the more diverse referencing patterns. Notice also that the trace contains only 5.053 

variables as opposed to 35303 values. Furthermore the value trace has 342.726 references as 

compared to 289317 in the value trace. The greater number of references is a result of including 

move instruCtions in the unflattened variable trace. The class in the upper left includes the 

variables that are referenced once, similar to those in figure 4.2. 

A similar histogram. showing the fraction of references to each variable class is shown in 

table 4.9. Notice once again that the c h  with the most variables do not n-ily correspond 

to the c h  with the greatest impact on traffic. 

Table 4.10 shows a histogram of lifetime vs. number of references for variables. The trend 

here as compared to table 4.4 is toward longer life times and more references per variable. The 

289517 =8.22 
35203 

variable trace has 342726 5053 = 67.83 average references per variable as opposed to 

January 29.1986 



Anal- of Memory Urn 15 

references per value in the flattened trace. T h e  unflattened variable trace has 18% more references, 

and the number of values is 7 times the number of variables. In the variable trace. a memory 

location is not considered dead until its final reference in the trace. 

Finally, 8 histogram with the same rues, counting references is shown in table 4.11. classes 

with less than 1% of the variables account for 1% and 32% of the references. Because these two 

classes. with lifetimes of 100,000-oo and references of 1,000-1O.OOO and 10~~100,OOO. contain so 

few values. their average memory space requirement should be less than 50 memory location 

(variables) each. yet these classes collectively account for over half of all the references. 

A small assortment of data for the other three programs, diff. flt. and gauss is shown in 

tables 4.12-4.17. The trends described above are also apparent in these histograms. 

5. Conclusions 

The bounds described above. along with the results from the trace analysis system offer 

guidelines for determining the traffic improvements that can be obtained from a memory of a 

specific size during the execution of particular programs. Analyzing a sufficient number of 

representative programs provides statistics for use in the bounds calculations above that determine 

the performance estimate of the local memory under actual use. The bounds do not provide the 

kind of detailed performance data required for final design and tuning of a memory. but they do 

Offer 8 basis for making g a d  decisions regarding memory design. 

In addition to judging design, the bounds developed in this research offer guidelines for 

resolving the tradeoffs involved in performing allocation of the local memory. Knowledge of the 

memory requirements of different classes and their effect on traffic. allows more informed 

decisions to be made regarding memory allocation policies. to be implemented at either the compiler 

or the hardware level. 

Analyzing a value trace offus information about the referencing behavior of a variable only 

during its live periods. The live periods are the only times that the value needs to be allocated 

January 29,1986 



Apalsdr of Memory Uls 16 

space in local memory. thus the memory referencing behavior during these periods is significant. 

Live value analysis allows the memory allocation mechanism to be more finely tuned to 

discriminate between live variables and dead ones. Furthermore. the referencing behavior of a 

memory location is 8 composite of the referencing behavior of the values that occupy it during the 

execution of the program. Value Behavior. in contrast with variable behavior. Is much more 

coherent, easier to classify, and relevant to nsolving the tradeoff8 at Issue here. Analyzing a value 

trace allows studying the referencing behavior of the values separately. 

Acknow&?dgernenz: This research was supported by the National Aeronautics and Space 
Administration (NASA) under contract NASA NAG 1-613 in cooperation with the Illinois 
Computer Laboratory for Aerospace Systems and Software (ICLASS). a NASAaupported Center 
for Excellence 

REFERENCES 
[Smit82] 

A. J. Smith, "Cache Memories." ACM computing Surveys, vol. 14. pp. 473-530. September 
1982. 

W.D. Strecker. "Transient Behavior of Cache Memories." ACM Transactions on Gmputer 
[Stress] 

SYS&IW. VO~. 1. pp. 281-293. November 1983. 
[Clara31 

D.W. Clark. "Cache Performance in the VAX-11/780." ACM Trans- on Computer Sys- 
tcnu. vol. 1. pp. 24-37, February 1983. 

IJ. Haiksl.. "Cache Hit Ratios with Geometric Task Switch Intervals," in Thc 11th AnnuoL 
Symposium an Camputer Architccttcn, AM Atbor, MI, pp. 364-371, June, 1984. 

C.A. Alexander, W. Keshlear. F. Coopa, and F. Briggs. "Cache Memory Performance in a 
UNM Environment," canpcta Architectum News. voL 14. pp. 41-70, June. 1986. 

Peuto and Shustek. "An Instruction Timing Model of CPU Performance," 4th h w u 2  Inter- 

[Haitt84] 

[AKc886] 

[Pesh77] 

nrrtional Sppium on canpaet Archit-. p ~ .  165-178, March 1977. 
[SmitSS] 

A.J. Smith. "Sprunt Cache*Evaluation and the Impact of Workload Choice," in The 12th An- 
nual S'psium an Computer Architecture, Boston MA. pp. 64-75. June, 1985. 

R. L. Mattson. J. Gecsei. D. R Slutz, and I. L. Traiger. "Evaluation Techniques for Storage 
Hierarchies." IBM Syt- J a m d .  vol. 9. pp. 78-117,1970. 

[Mcmro] 

DUFT January 29,1986 



Analyrir of Memory Urn 17 

[&la661 
L. A. Belady. *'A Study of Replacement Algorithms for Virtual Storage Computers." IBM 
Syfien~ J d .  VO~. 5. pp. 78-101.1966. 

(HKMW661 

IDaY701 

[Beat741 

L. P. Horwitz. R. M. Karp. R. E. Miller, and S. Winograd. "Index Register Allocation." Jow- 
nol of the ACM, voL 13. pp. 4341. January 1966. 

W. H. E. Day. "Compiler Assignment of Data Items to Registers." IBM System Journal. vol. 
14. p ~ .  281-317.1970. 

J. C. Batty. "Register Assignment Algorithm for Generation of Highly Optimized Object 
We." IBM J d  of Research and Development, vol. 18. pp. 20-39. January 1974. 

G.L. Chaitin, "Register Allocation and Spilling via Graph Coloring," in SIGPLAN 82 S y m p  
s i t m z m C Q m * ~  ' , Boston MA, pp. 98-105. June 23-25.1982. 

[ChaiSZ] 

January 29,1986 



Table 4.2. Average Interreference Time vs. Standard Deviation 
Program troff. Flattened trace, 289517 referenas 

Fraction of35203 values 

Standard 
Deviation 

Average Interreference Time 

0- 1- 10- loo- 1000- 10000- 100000- 
I 1  10 100 lo00 loo00 1OOOOO 00 

Standard 
Deviation 

0- 1- 10- 100- 1OOO- 10000- 100000- 
1 10 100 lo00 loo00 1OOOOO 00 

0-1 
1-10 
10-100 
100-lo00 
1oO0-1oooo 
10000-100000 
1OOO0040 

0.18 0.29 0.06 0.09 0.02 
0.18 0.02 c < 
< 0.06 0.02 < 

< 0.03 < 

< 
< 0.02 

i 0.03 < 
< 
< 

< 

Table 4.3. Average Interreference Time vs. Standard Deviation 
Program troff, Flattened trace, 289517 references. References - 2 

Fraction of 35203 values 

Average Intemference Time 

0-1 
1-10 
10-100 
100-1OOo 
1 ~ 1 o o o o  
10000-100000 
10000Q-0 

Lifetime 

0-1 
. 1-10 
10-100 
100-1OOo 
1oO0-1oooo 
10000-100000 
100000-oo 

0- 
1 

0.29 0.06 0.09 < < < 
< < 

< 

Table 4.4. Number of References vs. Lifctime 
Program troff. Flattened trace, 289517 references 

Fraction of 35203 values 

Number of References 

1- 10- 100- 1ooo- 10000- 100000- 
10 100 1OOO loo00 1OOOOO 00 

0.18 
0.29 
0.28 
0.15 < 
0.02 < c 
0.02 0.01 < 
0.02 0.01 0.01 < < 



Table 4.6. Average Interreference Time vs. Standard Deviation 
Program troff, Flatkned trace. 35203 values 

Fraction of 289517 references 

Standard 
Deviation 

Average Interreference Time 

(b 1- lo- 1 W  1ooo. 10000- 10000Q- 
1 10 100 loo0 loo00 1OOOOO 00 

Lifetime 

0-1 
1-10 
10-100 
10&1OOo 
1oO0-1oooo 
10000-100000 
lOOOO&OO 

0- 1- 10- 100- 1OOO- 10000- 10000(1. 
1 10 100 lo00 loo00 1OOOOO 00 

0.29 0.06 0.09 < . . .  ; < 
< < 

< 

Standard 
Deviation 

< 

0- 1- 10- 100- 
1 10 100 loo0 

Table 4.7. Number of References vs. Lifetime 
Program troff, Flattened trace, 35203 values 

Fraction of 289517 references 

N u m k  of References 

0-1 
1-10 
10-100 
1oo-loO0 
loO0-1oooo 
10000-100000 
100000-0 

0.02 
0.07 
0.13 
0.05 < 
< 0.02 0.02 
< 0.04 0.02 
0.01 0.04 0.30 0.13 0.11 

Figure 4.8. Average Interreference Time vs. Standard Deviation 
Program troff Unflattened trace, 342726 references 

Fraction of SO53 vlrirbles 

Average Interreference Time 

. 0-1 
- 1-10 
lbloo 
100-1oO0 
1ooo.1oooo 
10000-100000 
100000-0 

. .  
0.34 < 0.01 0.02 

< 0.02 
< 0.03 

0.04 

< < < 

1OOO- 1oooQ- 100000- 
loo00 1OOOOO 00 

0.08 0.27 0.02 
0.05 < 
< < 
< 
0.08 < 
< < 



Figure 4.9. Average Interreference Time w. Standard Deviation 
Program troff. Unflattcned trace, SO53 values 

Fraction of 342726 references 

St.ndud 
Deviation 

Average Interrefatncc Time 

0- 1- 10- 100- loO0- 10000- 100000- 
1 10 100 lo00 loo00 1OOOOO 00 

0-1 
1-10 
10-100 
100-1OOo 
1oO0-1oooo 
10000.100000 
1- 

Lifetime 

0-1 
1-10 
10-100 
100-1OOo 
1oO0-1oooo 
10000-100000 
10000090 

Lifetime 

0-1 
~ 1-10 
lbloo 
1oo-lo0o 
loO0-1oooo 
10000-100000 
100000-oo 

< < 0.01 0.10 0.08 . .  , 0.03 < 
0.11 < < < < 

0.13 < < < 
0.23 0.04 < 

0.19 0.06 < 
< < 

Table 4.10. Number of References vs. Lifetimq 
Program troff, Unflatkned Trace, 342726 references 

Fraction of 5053 values 

Number of References 

0- 1- lo- 100- 1OOO- 10000. 100000- 
1 10 100 lo00 loo00 1OOOOO 00 

0- 
1 

0.34 
< 
< 
0.01 < 
0.01 < < 
0.15 0.07 < 
0.14 0.14 0.10 < < 

Table 4.11. Number of Referenus vs. Lifetime 
Program troff, Unftattened traa, 5053 values 

Fraction of 342726 refereaces 

Number of References 

1- lo- 100- looo- 10000- 100000- 
10 100 lo00 loo00 100000 00 

. . a :  

< 
< 
< 
< < 
< < < 
< 0.02 < 
0.01 0.06 0.36 0.19 0.32 



Table 4.12. Average Interreference Time vs. Standard Deviation 
Program diff. Flattened traa. 43807 values 

Fraction of 254020 references 

Standard 
Deviation 

Average Interreference Time 

0- 1- 10. 100- 1OOO- 10000- 100000- 
1 10 100 lo00 loo00 1OOOOO 00 

Lifetime 

0-1 
1-10 
10-100 
100-lo00 
loO0-1oooo 
10000-100000 
100000-oo 

0- 1- 10- 100- 1000- 10000- 100000- 
1 10 100 lo00 loo00 1OOOOO 00 

0.04 0.07 0.11 < < 
0.03 0.02 < < 

0.16 < 
0.29 0.17 < 

< 
0.03 0.05 

I 0.01 < 
< 
< 

< 

Table 4.13. Number of References vs. Lifetime 
Program dB. Flattened trace. 43807 values 

Fraction of 254020 references 

Number of References 

0-1 
1-10 
10-100 
100-1o00 
1ooo-1oooo 
10000-100000 
100000-oo 

Standard 
Deviation 

0-1 
1-10 
lb-loo 
100-1OOo 
1oO0-1m 
10000-100000 
1- 

0.04 
0.07 
0.19 < 
0.02 < < 
< < < 

I 0.02 < 0.27 
< 0.03 0.10 0.22 

Table 4.14. Average Interreference Time vs. Standard Deviation 
Program flt, W d a t t e n e d  trace. 8223 values 

Fraction of 339698 references 

Average Interreference Time 

0- 1- 10- 100- 1OOO- 10000- 100000- 
1 10 100 lo00 loo00 1OOOOO 00 

0.02 < < < 0.07 0.02 < 
< < 
0.33 
0.20 0.24 0.03 < 

0.02 0.07 
I < 



Table 4.15. Number of Referenas vs. Lifetime 
prop- ftt, untlattened tnce. 8223 WJUCS 

Fraction of 339698 references 

l e t h e  

0-1 
1-10 
10-100 
100-1o00 
1ooo-1oooo 
1oooo-100000 
10000(kP 

Number of References 

0- 1- 10- 100- looo- oooo- 100000- 
1 10 100 lo00 loo00 1OOOOO 0 

0.02 . .  
< 
< 
< 
< 
< < 
< 0.08 0.22 0.42 0.26 

L 

Lifetime 

0-1 
1-10 
10-100 
1 ~ 1 O O o  
1ooo.1oooo 
10000-100000 
1OOOOO-O 

0- 
1 

Table 4.16. Number of References vs. Lifetime 
Program gauss40. Flattened trace. 242870 references 

Fraction of 31029 values 

Number of References 

1- 
10 

0.18 
0.23 
0.39 
0.10 
0.01 
< 

0.06 

10- 100- 1- 10000- 100000- 
100 lo00 loo00 1OOOOO 00 

0.01 
< 
< 
< 
< < < < 

Lifetime 
- 

0-1 
l:lO 
10-100 
100-1oO0 
1oO0-1oooo 
10000-100000 
lOOOOO-- 

Table 4.17. Number of References vs. Lifetime 
Program gauss40. Flattened trace, 31029 values 

Fraction of 242870 references 

Number of Refmnces  

0- 1- l& 100- 1OOO- 10000- 100000- 
1 10 100 lo00 loo00 1OOOOO a0 

. .  . .  
0.02 
0.08 
0.12 0.01 
0.03 0.04 
< '  < 
< < 

0.02 0.06 0.16 0.31 0.1 1 



Figure 4.1. I-ref Standard Deviation vs. 
Average I-ref Time 

Program mff, Flattened Trace 
289517 references. 31853 values.lO00 points Plotted 

12000 : 

- 

. .  

Interref crena 
Standard 
Deviation 80001 

60001 
0 

t 

4000: 

. 
0 .  
.a 

: e  

' _  Average Interreference Time 



b 

3 5  
w 

'd 

I' I 

Q 

I m  . 
..  

7 A a 
'9 



' 

i 
v - 
. ? 4  
4 
L -- 

13 
I m  

. 

c I 

. .  

Ln 

- 
6) 

Q I l l 1  1 1 1 1  I I I I  

Q m Q 
N d $ 2  3 

Q - Q 



L 

- -- 
I 

. 
I I I I m 
Q 
Q 
-r 

Q 
Q cu 

Q 

, 



Figure 4.5. I-ref Standard Deviation vs. 

Prognm troff. Unflattcned Trace 
342716 references. 5053 variables, lo00 points plotted 

AVage  I-tef Time 

0 

a 

0 

0 

a 

Interreference 
Standard 
Deviation 

0 

e 

0 

0 

0 

0 

Average Interreference Time 


